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The problem is solved concerning the vibrations of an infinite elastic, con~
stant-thickness plate covering the boundary of an anisotropic elastic half-space .,
It is assumed that there is no friction between the plate and the half-space
boundary , but constant normal and tangential forces act in the plane of the
plate, Nonstationary vibrations are causedby shock loads acting on the plate,
which results in the appearance of three kinds of plane shocks in the elastic
anisotropic half-space , behind whose fronts the solution is constructed by
using ray series [1],

1. We take the direction of the constant forces /Ny, Ny, acting in the plane
of the plate as the Z,, Z3 axes,respectively, and the normal to the plate as the axis
3. The system of equations describing the plate vibrations and the dynamic behavior
of the anisotropic half-space has the form

- Eh® L1
DAAw + plhw “+ Nq,ﬂw, ap = 4, D= m ( )

0ii,i =PV, Oi = MjmiUm, 1 (1.2)

Here w is the plate deflection, D is the cylindrical stiffness, h is the thickness,

E is the elastic modulus, v is the Poisson's ratio, p, is the density of the plate
material, ¢ (z,, Z;, t) is the pressure of the half-space on the plate, 0;; are the
stress tensor components, @ is the density of the half-space material, v; are com-
ponents of the displacement velocity vector, A;j,; are isothermal stiffness coeffic-
ients of the anisotropic material, the Latin subscripts take on the values 7, 2, 3 while
the Greek subscripts take on 7, 2 and the points denote the derivative with respect to
the time f, the subscript after the comma denotes the derivative with respect to the
appropriate coordinate,

At the initial instant, let a velocity dependent on the coordinates z,, z,
w |t=o =0, v ,t=o = Wy (Ta) (1.3)
be communicated to points of the plate,
Let us seek the quantity ¢ in the form
q = ZkL! F(k) (JCO,) t* (1.4)
k=0
where  (F(x) are unknown functions ),
A sudden application of pressure to the boundary of the anisotropic half-space re -
sults in the generation of plane shocks behind whose fronts the desired functions Z (Za,t)
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are represented by power series in £ — xac(,f) >0, e,
(1) (n zg \F

Here [Z{] are jumps in the % -th order time derivatives of the functions Z(™
(%, t) on the shock fronts, i.e.,for £ = x3c(n) the subscript n indicates the or-
dinal number of the wave,
To determine the coefficients of the ray series (1.5) of the required functions
Gy, Ui ,letus differentiate the equations of the system (1.2) k times with respect
to time ¢ | and take their difference on different sides of the wave surface, We con-
sequently obtain

06000 = 0 W hany]s [0 000] = Mg [V (1.6)

Taking account of the compatibility condition for the discontinuities of the(k-}-1)
~-th order derivatives of some function Z (xa, ) [21

.'%

em [Z%0] = — (2801 vi + —gB=vi + (28], o0 (1.7
we have from (1, 6 ) after manipulation
ol [V gyl = QA 0l = MijmgVivy — peimBim (1.8)
{(n) 2 [pn) A &”S;:,) !
€m) f{)'t.j, (k+1)] Vi = — Pl [Ui, (k+1)] = MgmiViV] %
K
cmyMijmiZ;, Vi [Ug:.)(k)l, o+ Fg(n)l)

8 125 1] i
95?13) = 27"ijmlvjvl “'_1:%" -+ C(ﬂ)"'ijml (1, av; + z;, aVy) [Vsn (k)] a Fg(n)n

82 [U(ﬂ) ]
k-1) L (k=
F g(n)l = hijmiV;iV; —mTt(gl-)— + c(n)}”iiml (71, «v; + 25, avy) X

3 [o ] (ny
5t T Cawimi®i, o%n,8 [0y 0

Here wv; is the normal to the wave surface, §;,, is the Kronecker symbol, ¢€(n) is
the velocity of shock propagation, §{Z] / 6¢ = lim [([Z], — [Z],) / At] as At
— 0, where [Z]; is the value of the jump in the quantity Z at some point M
of the wave surface X (#), while [Z], is the value of the jump at the point of
intersection with the surface = (¢ -+ At)  of a vector normal to the surface X (f)
at the point A [2],
We obtain from (1. 8) for a jump of zero order

of™ [vM] =0, ¢y [O(i;.‘)] v = — pc2

tmy (0471

It hence follows that the quantities pc(n) are principal values, while the vectors
[t )] are corresponding principal directions of a symmetric tensor of the second rank
)1 iiml vV JV!.
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Taking into account that

3
2 A
Mijumvivy = 3 peln 10, 0fUM =0, o = p (cdy — ch) 1Y

=1
(f#n)
where lf") are unit vectors of the principal directions, we find from (1,8)
v ™ (n,n) (n,n) _ ok -
n,n) (n,n -1
2p¢2,y —5— + cabl” vl,d = Fig 1Y — ceny Z b Ml 2 (1.9)
f=1
(f#n)
6 3
(k 1) (f,8) (n, 8) fe—
Vi 0 (chyy — Chy) = 2064 —57— + Cm E,b“ V) a — Fity 1

£=1
(f#n)
P = 8 ’f)+ e b(g R GR 42 \ €, Np(n, &)
il =pety g () T8t T 24 %8 Vi ap
g=1

i
vk )= s (0]
<n n

Aag " = Mjmzlﬁf’l%"xj, all, B

m D D

g

= [Um x, oVi + Zj, aVy)

Limiting ourselves henceforth to three terms of the ray series for the desired func -
tions, we obtain from (1,9) for £ =0, 1, 2:

U%") m = f(n) (ya)y UEO)‘ N = 0 (n # f)v 8‘) n) = g(n) (ya) + (1. 10)

1
C

ARy, apt, V" ———(n) =

P ety — Cn))

Uiy ™ = k) Ya) + (ASHEm, ap + Taiefm,apy) t + AGH AR X
f(n),a[iwo /2,

fm), e

(. f) _ p(n ) ey Aspty? ey
iy = Bag i), ap + ) fony.apvt + giny, o
P (ery — tn) G
(ns=1)
3
A — 1 (c2 amn) — bgl, n)bl(in’ n)) 1 Z & f)bgn h
af = S =5z ),
) (e * % = O T My
(f#<n)
f
F(%) Z{ c(n) ag;’ n_ bf_}n, n) b§,"’ f)) b&n ) _ B((;E ) bg’n, f)}
apy —
Zoem) C(")) % = n)
(f?m)
B D p(re ™) o2
n.hH __ %a "% 1 &)
Bg(;‘,nﬂ’ L2 S {C%n)dag (-— —— 2 } -+
P (<{p) —m)) P 2 = cln
& 5 b 040

o

(n1)
2 2 2
P2l — ) F= o T
(g#n)
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Here fm), &m), HKm) are derivatives of functions of two arguments
Y =z — 6™ ™ 2pemy) M, yo = 2y — by™ ™ (2peemy) 1t
Knowing the quantities v we determine

V) o] = 2 vy " I57
f=1

then, for & equalto %k — 1, we find [Giy (k)] v; from (1.8), Moreover, by using
the series (1. 5), we compute the components of the displacement vectors u4; and the
forces 0;;v;  behind each shock front

3

n, 1 k
= 3 i ofen) (£ — 22 @10
k=1 (n)
2
(n) 1 k
035 "V; = Z o [0’2;")(,‘)] v; (t —_— c_zs_)
k=0 (n)

and summing these series with respect to 2 from I to 3, we obtain

3
b= 3w, o= Z i (1. 12)
n=1 n=y
The arbitrary functions  f(n), &(n), K(ny in (1.12) are determined from the con -
dition that Go;v; = 0, 03;v; = ¢ for z; = 0 . Hence, taking account of (1. 4),
(1.8),(1.10) — (1. 12), we find

ey @) = = BnyFroy  Bimy @) = — BinyF iy — VOl ). o (1.13)

YF — wF

Fny (a) = — BinyF gy — W, e *as s (0), ap

3
Agn 1 A
) — DA,
P = Bon )‘3 ' Yo B%(n) 6ZZM’°‘ Bin N0

w _ M (mg  Aam
e Pc(n) Z c(z)"s (v ZM A 6+G BA“)

M) _ 1 3, m)pm) m 2\ D
My = 5 b I — Aﬂ‘jml\’zxj,c:l(m) — C(n) ~ l?)
= S Yy
(fs£n)

Gioh = — peem ARV + — — b U — j( Mgma (v,21, +-
n

Here

VY5, p) 0 "’1‘"’+c<n>xi,m,x,,ax: plin’ + Z{ peeBGs 1 +
(I#ﬂ)

R R
l — C(n) xijmllej' ﬂb&n' 7 l%))}

el
P (] ) C(n)) 26'(“)

A;j is the cofactor to the elements of the matrix 6 = || ;;® ||.
By using (1. 13) we obtain the expression for 4; intermsof F(g) » Fryy, Fy).



On nonstationary vibrations of plates 351

The unknown functions F(g), Fq), F(a) are found from the condition of continuity of
the normal displacements of the plate and anisotropic half-space for z3 = (. From
this condition we have

2
w = — hF )t — (AsFy) -+ wa(o),a)‘iz" -

, (1. 14)
(AsF 2y + BgoF (1), 0 + VaapF (0), aB) 5
3 a s 1 pin, f)
1 l( by,
S TR L
e == = m
(n>f)
1 Y\ [ o D07 o ) >
. n n
= £ 55 (B g sn) 5
n=1f=1 ) ( n) n=1
(n3f)

Since w isthe plate deflection, then (1. 14) cansatisfy the initial conditions (1. 3)
and the plate vibrations equation (1, 1). The initial conditions are satisfied if we set F ) =
—wy'Mg~L. Inorderto satisfy the vibrationsequation, (1. 14) mustbesubstituted into
(1.1) and terms with identical powersof ¢ mustbeequated. We consequently obtain

: B }
Foy= s + -
W = X 2o,k + At D00 (1.15)

3 h .
prhhsF ) = (N ap — %‘? T p{—a Vsas) W, ap —

m
2 xs:' Wy, o szl -+ DAAw,

Knowing F), Fq), Fa) wefindtherequireddeflection w bymeansof (1.14).

2. Letusassume that the half-space material isahexagonal zinc crystal [3], In this
case, two principal values of the symmetric tensor Ay, vyv; coincide (pcay =
PCe) = M 31s), and theircorresponding principal values lie in theplane z,z, (the prin-
cipal direction corresponding to the third principal value PC(s)? = Agggs coincide with
the axis ).
Considering the &, %3, T3 axes to be the principal axes, we find

l(i) ,1’ l(j) =0 (l = ]) b(’Y o) __ b(a, 8) __ =0

2.1
b =5 P = P (Msis + A'11:33) a((zlal) Mgiai
o P = alV =g, o7 = = Mz
o D s i
Taking account of the relationships (2. 1), we obtain from (1, 9)
3 = 1, 3) — (1,
Vi ¥ = fig (%a): ”%o) B = v 0, vGP =1 (%) .2)

(3,9) = 4 8.8) = —
v = 8 (Ka) + zp fo),aatr VP o, 8
vgx) c(l)bj (@), o (1') =g B(x )+ 25 2p o5 (@f @, pa T Manaf gy, an)

v = ki) (%) + ‘275'(3), oak T 's‘p?f . aapp £
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ba

5.6~ 025 [ @), anpt

3,8) = _
vfz)ﬂ)_— be

(1)
¥ = €18y, o T (@ + Aszia) fra, ap
v P = kg (2a) +- ? (dg«x). ap T Ma1zBg) o)t +

1
go7 18 (A + 2hons) f) apes T MotT@), aaoc) £2

a = be + Ma1s, b = (h3333 — Mygys)le
d = Mg1a + Apes — be, € = Aygys + Apygs

vé%) m) — [v( ) v(l' m) — [y( )

L iyh ) (i

The subscripts 3,  in the last two relationships correspond to waves being prop-
agated at the velocities €(g), Cq)-
The arbitrary functions fn), g), K(ny are defined thus

F (0) F (1)

= — —, = O’ = e —
T o ® o) P (2.3)
ey £h)
g(ﬁ) = __P(.T— (0), B
k(s)_———— Foy+ “' [(3,(i—x B) + ey (1 + ) (hizsg — A
5 1133 @ (1 =4 b) (A11ss 3333 D)
. (1 + b)
k= — D" "7 p
® o . e

By using (2.2),(2.3),(1. 1), we write the plate deflection in the form

F 1 F
(0) @) 42 3 (2.4)
[ ) By S (Fey+ eF ), aa)t
PC(3) 2 PC3) Gpc( @) 0

1
E= pc(a) [6(3) (_ - )\’1133b) + c(l) (1. ‘l“ b) 7“_133 —

eyt Pb (1 + b) (es) — 0(1))]

W= —

. ch2 o)
Fy=—pcawo, Fa)= wy, Foy=— —zzw +
26 DALy + peg) e g+ 2 Nagit, ap
mh @ P :
if
wy = v, sin Lz, sin Lz, (vy, 4, I; = const), N;;, =0
then

[ 1 P43 o 1 (P%%a) )3] in l,xy sin l
W=, t—-? o 1% 4 Borh \ ik ~+ r)t?|sin lyz, sin lsZ, (2.5)

r= —D (I, + L} + (Nyl,* + Nyoly?)

The dependence of the dimensionless deflection w* = weg, (voh)~" on the dimen-
sionless time t* = tc,yh™" is represented in Fig. 1, Curves 1— 4 correspond to the

following values of r* = rhpi™'¢p 7 11.19, 2.19, —0.81, —3.81.
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The ratio PPy was assumed to equal 0.9.

w%

7
TV
25 / %J\

N
Vi 25 7 t*
Fig.1

It is seen that the plate deflection depends on the sign of the quantity r*: for positive
r* (thiscorresponds to an excess of the normal forces over the Eulercritical value [4] )it
grows monotonically withtime, and fornegative r* it passesthrougha maximum,

Therefore, if w, (zy) icacontinuous function differentiable an infinite number
of timesinthewhole x,z, plane, thenthe problem of plate vibrations canbe solved
completely by using ray series.

Ifthe initial velocity ( initial stress) applied to the platehasone or more lines of
discontinuity on which the initial velocity itself otits derivatives of any order vary by a
jump, then the method elucidated is inapplicable, Thisisassociated with the displacement
of lines of discontinuity both along the plate (at an infinite velocity) and along the half-
space boundary (at the Rayleigh wave velocity ), which is not taken into account by the
solution obtained,
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